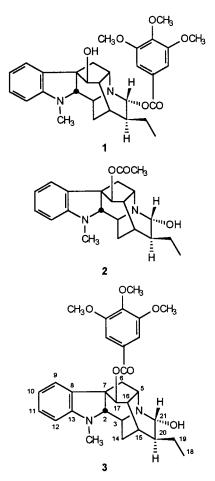
Revision of the Structure of Ajmalimine

Pirjo Hanhinen and Mauri Lounasmaa*


Laboratory for Organic and Bioorganic Chemistry, Technical University of Helsinki, P.O. Box 6100, FIN-02015 HUT Espoo, Finland

Received December 29, 2000

Careful reexamination of the published ¹H and ¹³C NMR spectral data of ajmalimine (**1**), an indole alkaloid from the roots of *Rauvolfia serpentina*, indicates that, in reality, the compound is (+)-17*R*-*O*-(3',4',5'-trimethoxybenzoyl)ajmaline (**3**).

Just over 10 years ago Siddiqui et al.¹ isolated from the roots of *Rauvolfia serpentina* Benth. (Apocynaceae) an indole alkaloid which they called ajmalimine. Mostly on the basis of spectroscopic data they proposed structure **1** for the isolated compound.

In our opinion² the reported ¹H and ¹³C NMR spectral data do not fit well with the proposed structure **1**. In particular, the ¹³C shift value δ 88.6 found for C-21 clearly indicates that the C-21 hydroxyl group cannot be benzo-ylated.

Mainly on the basis of the comparison of the spectral data of (+)-ajmalimine $(1 \rightarrow 1')$ and 17-*O*-acetylajmaline $(2)^3$ (Table 1), we now propose that ajmalimine isolated from *R. serpentina*¹ in reality is (+)-17*R*-*O*-(3',4',5'-trimethoxy-

Table 1. ¹ H and ¹³ C NMR Data for Compounds 1, 2, and 1	ľ
(Signals of 1 ' Are for Compound 1 after Reassignment) ^a	

		· · · · · ·			0,	
		1	2^{b}		1′	
position	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$	$\delta_{ m H}$	$\delta_{\rm C}$
2	2.68	80.5	2.73	79.0	2.68	78.1 ^a
3	3.67	46.4	3.69	43.0	3.67	44.7
5	n.r. ^c	54.5	3.04	53.2	n.r.	54.5
6α	n.r.	35.8	2.16	35.5	n.r.	35.8
6β	n.r.		1.91		n.r.	
7		57.1		54.5		57.1
8		134.7		131.8		134.7
9	7.46	124.3	7.26	122.4	7.46	124.3
10	6.80	120.4	6.77	119.3	6.80	120.4
11	7.16	128.4	7.15	127.7	7.16	128.4
12	6.66	110.5	6.66	109.8	6.66	110.5
13		154.6		153.6		154.6
14α	n.r.	31.9	1.9	31.1	n.r.	31.9
14β	n.r.		1.63		n.r.	
15	2.41	29.8	2.46	28.0	2.41	29.8
16	2.02	50.4	2.09	43.3	2.02	46.4
17	4.50	78.1	5.26	79.9	5.43	80.5
18	1.02	12.6	0.96	12.0	1.02	12.6
19	1.40	26.3	1.4	25.7	1.40	26.3
19′	1.40		1.5		1.40	
20	n.r.	44.7	1.5	48.0	n.r.	50.4
21	5.43	88.6	4.31	88.6	4.50	88.6
N-CH ₃	2.75	34.9	2.80	34.2	2.75	34.9
O-COR		165.6		170.4		165.6

 a Signals reassigned by the authors of the present note are indicated by underlining. b Values taken from ref 3. c n.r. = not recorded.

benzoyl)ajmaline (**3**).⁴ The stereostructures proposed for C-17, C-20, and C-21 [analogous to those of 17-*O*-acetylajmaline (**2**)] are supported by the low coupling constants (broad singlets) reported for $J_{16,17}$ and $J_{20,21}$.¹ Agreement among the signals is improved when the ¹H NMR signals of **1** at δ 4.50 and 5.43 ppm are assigned not to C-17-H and C-21-H, respectively, but in the reverse order (Table 1; compound **1**'). Moreover, in the ¹³C NMR spectrum of compound **1** the signals at δ 80.5, 46.4, 50.4, 78.1, and 44.7 ppm need to be reassigned (Table 1; compound **1**'). The occurrence of compound **3** in *Rauvolfia obscura* K. Schum. and *R. vomitoria* Afz. has been suggested by Timmins and Court,⁵ and Iwu,⁶ respectively.

References and Notes

- Siddiqui, S.; Ahmad, S. S.; Haider, S. I. *Planta Med.* 1987, *53*, 288–289.
- (2) Lounasmaa, M.; Hanhinen, P. In *The Alkaloids: Chemistry and Pharmacology*; Cordell, G. A., Ed.; Academic Press: San Diego, 2001; Vol. 55, Chapter 1, pp 1–87.
- (3) Jokela, R.; Lounasmaa, M. Planta Med. 1996, 62, 577–579. See also: Lounasmaa, M.; Jokela, R.; Kan, S. K. Heterocycles 1985, 23, 1503–1508. Siddiqui, S.; Haider, S. I.; Ahmad, S. S. Heterocycles 1987, 26, 463–467.

10.1021/np000618m CCC: \$20.00 © 2001 American Chemical Society and American Society of Pharmacognosy Published on Web 05/05/2001

^{*} To whom correspondence should be addressed. Tel: 358-9-4512534. Fax: 358-9-4512538. E-mail: mauri.lounasmaa@hut.fi.

- (4) The "biogenetic numbering" of Le Men and Taylor is used throughout the present note. Le Men, J.; Taylor, W. I. *Experientia* 1965, *21*, 508-510.
 (5) Timmins, P.; Court, W. E. *Planta Med.* 1976, *29*, 283-288.

(6) Iwu, M. M. Planta Med. 1980, Suppl. 13-16.

NP000618M